.

Friday, May 31, 2019

Superfluids and Superconductors :: physics

In 1924, the Indian physicist S. N. Bose developed an alternate law of radiation which modified Plancks laws to include a new variety of particles, namely, the boson. He sent off his theory to Einstein for revision and translation, and Einstein swiftly came up with some additions to the theory. He expanded the laws to incorporate the mass of the boson, and in doing so theorized a strange phenomenon. He predicted that when atoms of a gas came together under cold enough temperatures, and slowed down significantly, that they would all assume the exact uniform quantum state. He knew that this slow quantum gas would have strange properties, but wasnt able to get much further by theorizing. This phenomenon, which came to be known as a Bose-Einstien condensate, was an undreamed leap in quantum theory, but it wasnt demonstrated until 1995 when Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman made the first Bose-Einstein condensate with supercooled alkali gas atoms. Although this devel opment didnt come until late in the 20th century, umteen of these strange properties were observed in supercooled He4 by Dr. Pyotr Kapitsa. helium became the standard for observing superfluid phenomenon, and most new superfluid properties are still observed first in Helium 4.Superconductivity, a similar phenomenon, was discovered in 1911 by Dutch physicist Heike Kamerlingh Onnes. When he cooled some mercury down to liquid helium temperatures, it began to conduct electricity with no resistance at all. People began experimenting with other metals, and found that many tranisition metals exhibit this characteristic of 0 resistance if cooled sufficiently. Superconductors are analagous to superfluids in that the charges wi smooth them move sensibly like a superfluid - with no resistance through sections of extremely small cross-sectional area. Physicists soon discovered that oxides of copper and other compounds could reach even high superconducting temperatures. Currently, the highest temperature at wich a material can be superconductive is 138K, and is held by the compound Hg0.8Tl0.2Ba2Ca2Cu3O8.33. Superfluids all have the unique quality that all their atoms are in the same quantum state. This means they all have the same momentum, and if one moves, they all move. This allows superfluids to move without friction through the tiniest of cracks, and superfluid helium will even flow up the sides of a jar and over the top. This apparant defiance of gravity comes from a special type of surface wave present in superfluid helium, which in effect pushes this extremely thin film up the sides of the container.

No comments:

Post a Comment